

深圳市海凌科电子有限公司

HLK-LD6002B

3D 存在检测雷达模组通信协议 V3.7.1

目录

1. TF 帧说明	
1.1. 概述	1
1.2. 帧结构	1
1.3. 注意事项	1
2. 应用项目	3
2.1. 存在感知 2D/3D 项目	4
消息类型: 控制指令 0x0201	4
消息类型:设置干扰区域和检测区域的坐标位置 0x0202	5
消息类型:设置保持延时时间 0x0203	6
消息类型:设置 Z 轴范围 0x0204	6
消息类型:设置无人时低功耗模式睡眠时间 0x0205	7
消息类型:报告人员位置 0x0A04 / 0x0A08	7
消息类型:报告 3D 点云检测项目测试结果 0x0A08	8
消息类型:上报区域中是否有人 0x0A0A	9
消息类型:上报干扰区域和监控区域的位置 0x0A0B / 0x0A0C	9
消息类型:上报保持延时时间 0x0A0D	
消息类型:上报检测灵敏度状态	10
消息类型:上报触发速度状态 0x0A0F	11
消息类型: 上报 Z 轴范围 0x0A10	11
消息类型: 上报安装方式 0x0A11	12
消息类型:上报无人时低功耗模式 0x0A12	12
消息类型:上报无人时低功耗模式睡眠时间 0x0A13	13
消息类型: 上报工作模式 0x0A14	13
3. 编程接口	14
3.1. 编码 TF 消息	14
3.2. 解码 TF 消息	14
3.3 示例代码	15

1. TF 帧说明

1.1. 概述

TinyFrame 用作海凌科毫米波雷达产品中的通信协议。数据通过 UART 接口传输,若无特别说明,波特率为 115200,数据字长 8 位,停止位 1 位,无奇偶校验位,无硬件流控制。

每个帧由一个报头和一个有效载荷组成。这两个部分都可以通过校验和进行保护,以确保拒绝具有格式错误的标头(例如,具有损坏的长度字段)或损坏的有效负载的帧。

帧标头包含帧 ID 和消息类型。帧 ID 随着每条新消息的增加而增加。对于两个对等方,ID 字段的最高位固定为 1 和 0,以避免冲突。

帧 ID 可以在响应中重新使用,以将两条消息连接在一起。类型字段的值将在后面描述。

1.2. 帧结构

毫米波雷达帧中的字段配置如下:

格式	长度 (字节数)	格式含义				
SOF	1	起始帧,通常固定为 0x01。				
ID	2	帧 ID,MSB 对等位,代表发送包序(从 0 自增到 65535)。				
LEN	2	数据帧长度,代表 DATA 字节数(但由于规定的总帧长度限制,规				
LEIN	2	定 DATA 位长度不能超过 1024)。				
TYPE	2	消息类型。				
HEAD_CKSUM	1	使用 TF_CKSUM_XOR 计算头校验和(从 SOF 位到 TYPE 位先全部				
HEAD_CRSUIVI	1	异或,后取反)。				
DATA	N	长度为 LEN 的数据位。				
DATA CKCLIM	1	使用 TF_CKSUM_XOR 计算数据校验和(DATA 位所有字节先全部异				
DATA_CKSUM	1	或,后取反)。				

1.3. 注意事项

TF 帧排列方式

在 TF 帧中,SOF 位~HEAD_CKSUM 位与 DATA_CKSUM 高字节在前,低字节在后,而 DATA 位为低字节在前,高字节在后。

例如: DATA 数据类型为 uint32 的数据,它的值为 0x12345678,小端序方式传输数据,则为 0x78 0x56 0x34 0x21。ID 数据类型位 uint16 的数据,它的值为 0x1234,大端序方式传输数据,则为 0x12 0x34。

实际数据范围超出规定数据方位

HEAD_CKSUM 位和 DATA_CKSUM 位在计算后,如果超过 1 个字节,将只取最低的 1 个字节数。例如: HEAD_CKSUM 位为 0x1232,最终只取 0x32。

特别说明:

- 1.在本项目中下发给下位机的所有 TF 帧,下位机接收到消息后,首先会回复一条相同 TPYE 类型无DATA 位的数据,告诉上位机接收到了数据。若无回复,请重新下发配置消息。
- 2.打开无人时低功耗模式,下位机会进入睡眠模式,下发配置消息前,需要将 UARTO 的 RXO 引脚拉低,进行唤醒。或者通过下发配置消息,唤醒下位机,回读来确认消息是否配置成功,若无回复,重新发送配置消息。
- 3.上位机下发数据后,或者下位机被唤醒,下位机将在正常模式下工作,10s 内不会进去无人低功耗模式,若 10s 后无人,则会再次进入无人低功耗模式。

2. 应用项目

针对不同的应用项目,列出所有与 TF 帧相关的消息,供用户参考并完成解析,对于文档所出现的消息类,以及消息数据位,是在对应实际项目所配备的。

(存在感知 2D/3D 的上位机界面)

2.1. 存在感知 2D/3D 项目

消息类型:控制指令 0x0201

消息类型为 0x0201, 仅支持单向数据传输模式。

上位机发送数据给雷达: MSG_CFG_HUMAN_DETECTION_3D						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 00		
LEN	2 byte	uint16	数据帧长度	00 04		
TYPE	2 byte	uint16	帧类型	02 01	用于设置雷达的部分状态。	
HEAD_CKSUM	1 byte	uint8	头校验和	F3		
DATA	4 byte	int32	[command]	01		
DATA_CKSUM	1 byte	uint8	数据校验和	FE		

以下是 command 为不同值的作用:

● 0x1:自动生成干扰区。

● 0x2: 获取干扰区域和检测区域。

● 0x3:清除干扰区域。

● 0x4: 重置检测区域。

● 0x5: 获取保持延时时间。

● 0x6: 打开点云显示。

● 0x7: 关闭点云显示。

● 0x8: 打开目标显示。

● 0x9: 关闭目标显示。

● 0xA:设置检测灵敏度低。

● 0xB:设置检测灵敏度中。

● 0xC:设置检测灵敏度高。

● 0xD: 获取检测灵敏度状态。

● 0xE:设置触发速度慢。

● 0xF: 设置触发速度中。

0x10:设置触发速度快。

● 0x11: 获取触发速度状态。

● 0x12: 获取 Z 轴范围。注: 这条协议仅适用于 3D。

● 0x13:设置安装方式为顶装。注: 这条协议仅适用于 3D。

● 0x14: 设置安装方式为侧装。注: 这条协议仅适用于 3D。

● 0x15: 获取安装方式。

传感模组

LD6002B-60G

0x16: 打开无人时低功耗模式。0x17: 关闭无人时低功耗模式。

0x18: 获取无人时低功耗模式是否打开。0x19: 获取无人时低功耗模式睡眠时间。

● 0x1A: 重置无人状态。

消息类型:设置干扰区域和检测区域的坐标位置 0x0202

消息类型为 0x0202, 仅支持单向数据传输模式。

	上位机发送数据给雷达:MSG_CFG_HUMAN_DETECTION_3D_AREA						
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧 ID	00 00			
LEN	2 byte	uint16	数据帧长度	00 14			
TYPE	2 byte	uint16	帧类型	02 02			
HEAD_CKSUM	1 byte	uint8	头校验和	/			
DATA	4 byte	int32	[area_id]	/	 - 设置干扰区域和检测区域。		
DATA	4 byte	float	[x_min]	/	,		
DATA	4 byte	float	[x_max]	/			
DATA	4 byte	float	[y_min]	/			
DATA	4 byte	float	[y_max]	/			
DATA	4 byte	float	[z_min]	/			
DATA	4 byte	float	[z_max]	/			
DATA_CKSUM	1 byte	uint8	数据校验和	/			

以下是 DATA 数据为不同值的作用:

- [area_id]:设置区域的 ID,数据类型 int32,0 到 3 为干扰区域,4 到 7 为检测区域。
- [x_min]:设置区域 x 坐标的最小值,数据类型 float,单位:米(m)。
- [x max]:设置区域 x 坐标的最大值,数据类型 float,单位:米(m)。
- [y_min]:设置区域 y 坐标的最小值,数据类型 float,单位:米(m)。
- [y_max]:设置区域 y 坐标的最大值,数据类型 float,单位:米(m)。
- [z_min]:设置区域 z 坐标的最小值,数据类型 float,单位:米(m)。
- [z_max]:设置区域 z 坐标的最大值,数据类型 float,单位:米(m)。
- 注:总共有4个干扰区域和4个检测区域,ID0到ID3为干扰区域,ID4到ID7为检测区域,一次只能设置一个区域。
- 注: 此条协议用于 2D 存在时请将 z_min 设置为-6m, z_max 设置为 6m。

消息类型:设置保持延时时间 0x0203

消息类型为 0x0203, 仅支持单向数据传输模式。

上位机发送数据给雷达: MSG_CFG_HUMAN_DETECTION_3D_PWM_DELAY						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 00		
LEN	2 byte	uint16	数据帧长度	00 04		
TYPE	2 byte	uint16	帧类型	02 03	用于设置保持延时时间。	
HEAD_CKSUM	1 byte	uint8	头校验和	/		
DATA	4 byte	int32	[pwm_delay]	1E		
DATA_CKSUM	1 byte	uint8	数据校验和	FE		

以下是 DATA 为不同值的作用:

● [pwm_delay]:设置保持延时时间,数据类型 uint32,单位:秒(s)。

● 注: 默认为 30s。

消息类型:设置 Z 轴范围 0x0204

消息类型为 0x0204, 仅支持单向数据传输模式。

上位机发送数据给雷达:MSG_CFG_HUMAN_DETECTION_3D_Z							
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	00 00			
LEN	2 byte	uint16	数据帧长度	00 04			
TYPE	2 byte	uint16	帧类型	02 04	│ │		
HEAD_CKSUM	1 byte	uint8	头校验和	/	713 XE - 1870E		
DATA	4 byte	float	[z_min]	/			
DATA	4 byte	float	[z_max]	/			
DATA_CKSUM	1 byte	uint8	数据校验和	FE			

以下是 DATA 为不同值的作用:

● [z min]:设置区域 z 坐标的最小值,数据类型 float,单位:米(m)。

● [z_max]:设置区域 z 坐标的最大值,数据类型 float,单位:米(m)。

● 注: 这条协议仅适用于 3D。

消息类型:设置无人时低功耗模式睡眠时间 0x0205

消息类型为 0x0205, 仅支持单向数据传输模式。

上位机发送数据给雷达: MSG_CFG_HUMAN_DETECTION_3D_LOW_POWER_MODE_TIME							
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	00 00			
LEN	2 byte	uint16	数据帧长度	00 04			
TYPE	2 byte	uint16	帧类型	02 05	用于设置保持延时时间。		
HEAD_CKSUM	1 byte	uint8	头校验和	/			
DATA	4 byte	unt32	[waitingPeriod]	01 F4			
DATA_CKSUM	1 byte	uint8	数据校验和	FE			

以下是 DATA 为不同值的作用:

● [waitingPeriod]:设置无人时低功耗模式睡眠时间,数据类型 uint32,单位:毫秒(ms)。

● 注: 默认为 500ms。

消息类型: 报告人员位置 0x0A04 / 0x0A08

消息类型为 0x0A04, 仅支持单向数据传输模式。0x0A04 为目标数据, 0x0A08 为点云数据。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_TGT _RES						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 00		
LEN	2 byte	uint16	数据帧长度	/		
TYPE	2 byte	uint16	帧类型	0A 04		
HEAD_CKSUM	1 byte	uint8	头校验和	/		
DATA	4 byte	int32	[target_num]	/	 用于报告人员位置。	
DATA	4 byte	float	[x]	/	用了报古八页位置。 	
DATA	4 byte	float	[y]	/		
DATA	4 byte	float	[z]	/		
DATA	4 byte	int32	[dop_idx]	/		
DATA	4 byte	Int32	[cluster_id]	/		
DATA_CKSUM	1 byte	uint8	数据校验和	/		

以下是每个 DATA 位对应的含义:

● [target_num]: 目标个数。

[x]: x 坐标,数据类型 float,单位:米(m)。
 [y]: y 坐标,数据类型 float,单位:米(m)。
 [z]: z 坐标,数据类型 float,单位:米(m)。

传感模组

LD6002B-60G

● [dop_idx]:数据类型 int32,速度 dop_idx。

● [cluster id]:数据类型 int32,聚类目标 ID。

注:当目标存在 N 个的时候,x、y、z、dop_idx、cluster_id 也存在 N 个。

● 注: 2D 时此条协议 Z 轴输出为 0。

消息类型: 报告 3D 点云检测项目测试结果 0x0A08

消息类型为 0x0A08, 仅支持单向数据传输模式(开启 User log 后自动上传)。

	雷达发送数据给上位机: MSG_IND_3D_CLOUD _RES					
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 00		
LEN	2 byte	uint16	数据帧长度	\		
TYPE	2 byte	uint16	帧类型	0A 08	 用于报告 3D 点云检测结	
HEAD_CKSUM	1 byte	uint8	头校验和	\	 果。其中消息类型为	
DATA	4 byte	int32	[target_num]	\		
DATA	4 byte	int32	[cluster_index]		0x0A08 是点云信息	
DATA	4 byte	float	[x_point]	\		
DATA	4 byte	float	[y_point]	\		
DATA	4 byte	float	[z_point]	\		
DATA	4 byte	float	[speed]	\		
DATA_CKSUM	1 byte	uint8	数据校验和	\		

以下是每个 DATA 位对应的含义:

● [target num]: 目标个数。

● [cluster index]: 聚类目标 ID。

● [x point]: x 坐标,单位: m。

● [y point]: y 坐标,单位: m。

● [z point]: z 坐标,单位: m。

● [speed]: 速度, 单位: m/s。

当点云存在 N 个的时候,x、y、z、dop_idx 也存在 N 个,cluster_id 距离相近点云 ID 相同,示例:

 01
 41
 A1
 00
 68
 0A
 08
 74
 05
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

 点云 ID
 x1 坐标
 y1 坐标
 z1 坐标
 速度 V1
 点云 ID
 x2 坐标
 y2 坐标
 z2 坐标

 E1 3E 39 63 18 BC
 00 00 00 00 BF 56 CA BD
 F8 E4 EE 3E 39 CC 65 3E 39 63 18 3C 00 00 00 00 48 0B A3

 速度 V2
 点云 ID
 x3 坐标
 y3 坐标
 速度 V3
 点云 ID
 x4 坐标

BD 37 92 18 3F E0 2F 16 3D 39 63 18 3C 6F

y4 坐标 z4 坐标 速度 V4 数据校验和

消息类型: 上报区域中是否有人 0x0A0A

消息类型为 0x0A0A, 仅支持单向数据传输模式。

雷达发送数据给上位机:MSG_IND_HUMAN_DETECTION_3D _RES							
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	00 00			
LEN	2 byte	uint16	数据帧长度	00 04			
TYPE	2 byte	uint16	帧类型	0A 0A			
HEAD_CKSUM	1 byte	uint8	头校验和	F3			
DATA	4 byte	uint32	[detection_state_area0]	01			
DATA	4 byte	uint32	[detection_state_area1]	01			
DATA	4 byte	uint32	[detection_state_area2]	00			
DATA	4 byte	uint32	[detection_state_area3]	01			
DATA_CKSUM	1 byte	uint8	数据校验和	FE			

以下是每个 DATA 位对应的含义:

● 上报 4 个检测区域是否有人, 1 为有人, 0 为无人。

消息类型: 上报干扰区域和监控区域的位置 0x0A0B / 0x0A0C

消息类型为 0x0A0B 为干扰区域的消息, 0x0A0C 为检测区域, 仅支持单向数据传输模式。

雷边	雷达发送数据给上位机: MSG_IND_HUMAN_ (NOISE) DETECTION_3D_NOISE_AREA _RES						
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	00 00			
LEN	2 byte	uint16	数据帧长度	/			
				0A	当上位机发送数据类型为		
TYPE	2 byte	uint16	帧类型	0B/0A	0x0201,数据为 0x02 的命		
				0C	 令。下位机会发送两条 TF		
HEAD_CKSUM	1 byte	uint8	头校验和	/			
DATA	4 byte	int32	[x_min]	/	帧信息, 0x0A0B 和		
DATA	4 byte	float	[x_max]	/	0x0A0C.		
DATA	4 byte	float	[y_min]	/	 其中 0x0A0B 为干扰区域的		
DATA	4 byte	float	[y_max]	/			
DATA	4 byte	float	[z_min]	/	消息,0x0A0C 为检测区域		
DATA	4 byte	float	[z_max]	/			
DATA_CKSUM	1 byte	uint8	数据校验和	FE			

以下是每个 DATA 位对应的含义:

[x_min]:设置区域 x 坐标的最小值,数据类型 float,单位:米(m)。
 [x_max]:设置区域 x 坐标的最大值,数据类型 float,单位:米(m)。
 [y_min]:设置区域 y 坐标的最小值,数据类型 float,单位:米(m)。

传感模组

传感模组

LD6002B-60G

● [y_max]:设置区域 y 坐标的最大值,数据类型 float,单位:米(m)。

● [z_min]:设置区域 z 坐标的最小值,数据类型 float,单位:米(m)。

● [z max]:设置区域 z 坐标的最大值,数据类型 float,单位:米(m)。

注: 此消息上报干扰区域的位置,总共有 4 个干扰区域和 4 个检测区域,0x0A0B 上报 4 个干扰区域的坐标,0x0A0C 上报 4 个检测区域的坐标。

● 注: 这条协议仅用于 2D 时,z_min 默认设置为-6m,z_max 默认设置为 6m。

•

消息类型: 上报保持延时时间 0x0A0D

消息类型为 0x0A0D, 仅支持单向数据传输模式。

雷达发送数据给上位机:MSG_IND_HUMAN_DETECTION_3D_PWM_DELAY							
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	00 01			
LEN	2 byte	uint16	数据帧长度	00 04			
TYPE	2 byte	uint16	帧类型	0A 0D	获取保持延时时间。		
HEAD_CKSUM	1 byte	uint8	头校验和	FC			
DATA	4 byte	uint8	[pwmDelayTimer]	05			
DATA_CKSUM	1 byte	uint8	数据校验和	FA			

以下是每个 DATA 位对应的含义:

● 保持延时时间。

消息类型: 上报检测灵敏度状态 0x0A0E

消息类型为 0x0A0E, 仅支持单向数据传输模式。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_DETECT_SENSITIVITY						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 01		
LEN	2 byte	uint16	数据帧长度	00 04		
TYPE	2 byte	uint16	帧类型	0A 0E	获取检测灵敏度状态。	
HEAD_CKSUM	1 byte	uint8	头校验和	FF		
DATA	1 byte	uint8	[detectSensitivity]	01		
DATA_CKSUM	1 byte	uint8	数据校验和	FE		

以下是每个 DATA 位对应的含义:

● 上报检测灵敏度, 0: 低、1: 中、2: 高。

消息类型: 上报触发速度状态 0x0A0F

消息类型为 0x0A0F, 仅支持单向数据传输模式。

雷达发送数据给上位机:MSG_IND_HUMAN_DETECTION_3D_DETECT_TRIGGER						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 01		
LEN	2 byte	uint16	数据帧长度	00 04		
TYPE	2 byte	uint16	帧类型	0A 0F	获取触发速度状态。	
HEAD_CKSUM	1 byte	uint8	头校验和	FB		
DATA	1 byte	uint8	[detectTrigger]	02		
DATA_CKSUM	1 byte	uint8	数据校验和	FD		

以下是每个 DATA 位对应的含义:

● 上报触发速度, 0: 慢、1: 中、2: 快。

消息类型: 上报 Z 轴范围 0x0A10

消息类型为 0x0A10, 仅支持单向数据传输模式。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_DETECT_TRIGGER						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	00 01		
LEN	2 byte	uint16	数据帧长度	00 04	获取 Z 轴设置范围。	
TYPE	2 byte	uint16	帧类型	0A 10		
HEAD_CKSUM	1 byte	uint8	头校验和	FB		
DATA	4 byte	float	[z_min]	/		
DATA	4 byte	float	[z_max]	/		
DATA_CKSUM	1 byte	uint8	数据校验和	FD		

以下是每个 DATA 位对应的含义:

● [z min]:设置区域 z 坐标的最小值,数据类型 float,单位:米(m)。

● [z_max]:设置区域 z 坐标的最大值,数据类型 float,单位:米(m)。

• 注: 这条协议仅适用于 3D。

消息类型: 上报安装方式 0x0A11

消息类型为 0x0A11, 仅支持单向数据传输模式。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_INSTALL_SITE					
格式	字节数	基本类型	帧结构	示例帧	帧含义
SOF	1 byte	uint8	起始帧	01	
ID	2 byte	uint16	帧ID	02 2E	
LEN	2 byte	uint16	数据帧长度	00 01	
TYPE	2 byte	uint16	帧类型	0A 11	获取安装方式。
HEAD_CKSUM	1 byte	uint8	头校验和	C8	
DATA	1 byte	uint8	[installSite]	/	
DATA_CKSUM	1 byte	uint8	数据校验和	FD	

以下是每个 DATA 位对应的含义:

● 上报安装方式, 0: 顶装、1: 侧装。

消息类型: 上报无人时低功耗模式 0x0A12

消息类型为 0x0A12, 仅支持单向数据传输模式。

	雷达发送数据给上位机:MSG_IND_HUMAN_DETECTION_3D_LOW_POWER_MODE						
格式	字节数	基本类型	帧结构	示例帧	帧含义		
SOF	1 byte	uint8	起始帧	01			
ID	2 byte	uint16	帧ID	02 2E			
LEN	2 byte	uint16	数据帧长度	00 01] - 获取无人时低功耗模		
TYPE	2 byte	uint16	帧类型	0A 12	式。		
HEAD_CKSUM	1 byte	uint8	头校验和	/	100		
DATA	1 byte	uint32	[lowPowerMode]	/			
DATA_CKSUM	1 byte	uint8	数据校验和	FD			

以下是每个 DATA 位对应的含义:

● 0: 无人时低功耗模式关闭。

● 1: 无人时低功耗模式打开。

消息类型: 上报无人时低功耗模式睡眠时间 0x0A13

消息类型为 0x0A12, 仅支持单向数据传输模式。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_LOW_POWER_TIME						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	02 2E		
LEN	2 byte	uint16	数据帧长度	00 01	 获取无人时低功耗模式	
TYPE	2 byte	uint16	帧类型	0A 13	睡眠时间。	
HEAD_CKSUM	1 byte	uint8	头校验和	/	יריונים/אוו יי ם,	
DATA	1 byte	uint32	[waitingPeriod]	/		
DATA_CKSUM	1 byte	uint8	数据校验和	FD		

以下是每个 DATA 位对应的含义:

● 无人时低功耗模式睡眠时间。

消息类型: 上报工作模式 0x0A14

消息类型为 0x0A14, 仅支持单向数据传输模式。

雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_MODE						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧ID	02 2E		
LEN	2 byte	uint16	数据帧长度	00 01		
TYPE	2 byte	uint16	帧类型	0A 14	上报工作模式。	
HEAD_CKSUM	1 byte	uint8	头校验和	/		
DATA	1 byte	uint8	[detectStateMessager]	/		
DATA_CKSUM	1 byte	uint8	数据校验和	FD		

以下是每个 DATA 位对应的含义:

● 0: 模式为无人低功耗模式。

● 1: 模式为正常模式。

注: 在无人低功耗模式和正常模式切换时会发送这条消息。

3. 编程接口

3.1. 编码 TF 消息

void tinyFramefTx(TF TYPE type, uint8 *data, TF LEN len);

其中 type 为发送数据类型, uint16 类型, 例如人员检测数据结果上报, 数据类型为 0x0A10。见 4.2.1.6 详述。

Uint8* data 是发送数据的地址。

Len 为发送数据的长度, uint16 类型。

3.2. 解码 TF 消息

TinyFrameRx tinyFramefRx(void);

成功接收消息后,接收的数据返回到一个 TinyFrameRx 类型的变量。

A、以下是 DATA 位数据取出的方法:

如下: 串口接收到十六进制的, int32 转换成 float: 例如[x_point]位为 0x66、0x66、0xA2、0x41, 先拼成 uint32 位整形, 由于 TF 帧 Data 位小端序, 所以值为 0x41A26666, 然后进行 float 类型强转, 最终结果为: 20.3。

```
1. int main(void)
2. {
3.    unsigned int param = 0x41A26666;
4.    float res = *(float *)&param;
5.
6.    printf("data: %f\n", res);
7.    return 0;
8. }
```

B、以下是每个 CKSUM 的解析:

HEAD_CKSUM: TF 帧头校验和 【从第一个字节开始到 HEAD_CKSUM 位的上一个字节】

DATA CKSUM: TF 数据验和【DATA 的第一个到 DATA CKSUM 位的上一个字节】

其中计算 CKSUM 的方法 c 代码如下所示:

```
1. unsigned char getCksum(unsigned char *data, unsigned char len)
2. {
3.    unsigned char ret = 0;
4.
5.    for (int i = 0; i < len; i++)
6.        ret = ret ^ data[i];
7.
8.    ret = ~ret;
9.
10.    return ret;</pre>
```

传感模组

11. } 12.

3.3. 示例代码

如果想要解析 TF 帧数据的 demo(包含 Linux 环境与 Keil μ Vision5 环境下的 C 语言 demo、Python 语言 demo),可以直接与销售沟通获得。